IHF Modulation of Tn10 Transposition: Sensory Transduction of Supercoiling Status via a Proposed Protein/DNA Molecular Spring

نویسندگان

  • Ronald Chalmers
  • Anjan Guhathakurta
  • Howard Benjamin
  • Nancy Kleckner
چکیده

Architectural protein IHF modulates Tn10 transposition in vitro. IHF stimulates transposon excision. Also, separately, IHF forces transposon end/target DNA interactions into a constrained pathway, "channeling," that yields only unknotted intratransposon inversion circles. Negative supercoiling influences both effects, differently. We infer that IHF is an architectural catalyst: it promotes initial transpososome assembly and is then ejected from the transpososome. IHF then rebinds, altering transpososome conformation to promote channeling. We also infer that the developing transpososome is a molecular spring: DNA provides basic elasticity; a conformational change in transposase provides force; and IHF and/or supercoiling provide conformational inputs. In vivo, IHF is a sensory transducer of chromosomal supercoiling status: with supercoiling absent, IHF is "supercoiling relief factor"; with supercoiling present, stimulation and channeling comprise a homeostatic pair such that modest changes in chromosome condition strongly influence transpositional outcome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tn10 transpososome assembly involves a folded intermediate that must be unfolded for target capture and strand transfer.

Tn10 transposition, like all transposition reactions examined thus far, involves assembly of a stable protein-DNA transpososome, containing a pair of transposon ends, within which all chemical events occur. We report here that stable Tn10 pre-cleavage transpososomes occur in two conformations: a folded form which contains the DNA-bending factor IHF and an unfolded form which lacks IHF. Function...

متن کامل

Cyclic changes in the affinity of protein–DNA interactions drive the progression and regulate the outcome of the Tn10 transposition reaction

The Tn10 transpososome is a DNA processing machine in which two transposon ends, a transposase dimer and the host protein integration host factor (IHF), are united in an asymmetrical complex. The transitions that occur during one transposition cycle are not limited to chemical cleavage events at the transposon ends, but also involve a reorganization of the protein and DNA components. Here, we d...

متن کامل

H-NS binds with high affinity to the Tn10 transpososome and promotes transpososome stabilization

H-NS is a bacterial DNA-binding protein that regulates gene expression and DNA transposition. In the case of Tn10, H-NS binds directly to the transposition machinery (i.e. the transpososome) to influence the outcome of the reaction. In the current work we evaluated the binding affinity of H-NS for two forms of the Tn10 transpososome, including the initial folded form and a pre-unfolded form. Th...

متن کامل

H-NS mediates the dissociation of a refractory protein–DNA complex during Tn10/IS10 transposition

Tn10/IS10 transposition takes place in the context of a protein-DNA complex called a transpososome. During the reaction, the transpososome undergoes several conformational changes. The host proteins IHF and H-NS, which also are global regulators of gene expression, play important roles in directing these architectural changes. IHF binds tightly to only one of two transposon ends within the tran...

متن کامل

The positive and negative regulation of Tn10 transposition by IHF is mediated by structurally asymmetric transposon arms.

The Tn10 transpososome has symmetrical components on either side: there are two transposon ends each of which has binding sites for a monomer of transposase and an IHF heterodimer. The DNA bending activity of IHF stimulates assembly of an intermediate with tightly folded transposon ends in which transposase has additional 'subterminal' DNA contacts, located distal to the IHF site. These subterm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 93  شماره 

صفحات  -

تاریخ انتشار 1998